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Abstract

Chebyshev series approximation is applied to solve the problem of vibration of the nonprismatic Timoshenko beam

resting on a two-parameter elastic foundation. As a result, a system of equations (whose coefficients have a closed form)

for calculating the coefficients of the sought solution is obtained. The method is used to solve the free vibration problem

for simple supported and clamped–free nonprismatic beams. The results are compared with the results obtained by other

authors. Also the nonprismatic beam stability problem is solved and the results are compared with those obtained for

Euler beams. To demonstrate the method’s applicability to more complex systems the problem of stability of a frame

system is solved.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of beam systems with variable material and geometric parameters has attracted much interest
because of the need for rational and economic shaping of structures. The interest is reflected in the large
number of papers devoted to this subject. Passing over the extensive literature on the dynamics of Euler beam
systems (e.g. Refs. [1,2]), we shall limit ourselves to a review of works dealing with the Timoshenko beam. An
analytical solution of the nonprismatic Timoshenko beam free vibration problem was presented by, among
others, Huang [3] who reduced a system of two differential equations to one equation which he solved
analytically. The solution is expressed by trigonometric and hyperbolic functions. Using the same method
Bruch and Mitchell [4] solved the problem of free vibration of a cantilever beam with a mass element with
nonnegligible rotatory inertia, placed at its end. Many of the published works on the Timoshenko beam
vibration problem deal with the dynamic stability problem. The problem was investigated by, among others,
Katsikadelis and Kounadis [5,6]. An analytical solution of the Beck column stability problem was presented in
Ref. [5]. Kounadis derived equations for the problem of vibration of the Timoshenko beam subjected to a
concentrated load and a uniformly distributed follower load [6]. The equations were derived in three
independent ways by applying the principle of virtual work, Hamilton’s principle and the equilibrium method.
Sato applied the variational Hamilton principle to derive equations describing the vibration of the
Timoshenko beam loaded with an axial force and a tangential force [7]. The transfer matrix method was
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.02.011

esses: piotr.ruta@pwr.wroc.pl, ruta@i14odt.iil.pwr.wroc.pl.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.02.011
mailto:piotr.ruta@pwr.wroc.pl,


ARTICLE IN PRESS
P. Ruta / Journal of Sound and Vibration 296 (2006) 243–263244
applied to solve the problems of vibration and stability of the nonprismatic Timoshenko beam in a paper by
Irie et al. [8]. The solution (sought in the form of power series) of the stability problem for variously supported
nonprismatic beams was presented by Esmailzadeh and Ohadi in Ref. [9]. The nonprismatic beam vibration
problem was solved using the finite element method by Klasztorny in Ref. [10] where a polynomial
approximation was assumed for the shape functions on the basis of which rigidity and inertia matrices were
then determined for finite Euler and Timoshenko beam elements. The Laplace transformation was applied to
solve the problem in papers by Lueschen et al. [11] and Saito and Otomi [12]. Green functions were determined
and compared for prismatic Euler and Timoshenko beams in Ref. [11]. In the case of the Euler beam, time-
invariable axial loading of the beam was taken into account. The problems of vibration and stability of the
Timoshenko beam with an added mass element (with non-negligible rotatory inertia), subjected to axial and
tangential loads, were solved in Ref. [12]. A different approach to the nonprismatic beam vibration problem
was employed by Tong et al. [13] who approximated the nonprismatic beam with a segmentally prismatic
beam with stepwise variable parameters and using analytical solutions for the prismatic beam and continuity
conditions solved the problem. Using distribution theory formalism Yavari et al. solved the problem of
vibration of the beam with stepwise variable parameters [14]. The vibration of more complex systems was
studied by, among others, Posiada"a who in Ref. [15] solved the problem of transverse vibration of the
Timoshenko beam with attachments such as springs, mass elements with a zero and nonzero moment of
inertia, linear oscillators and additional supports, using the Lagrange equations and approximating the
functions of displacements and angles of cross-section rotation with a series relative to the eigenfunctions
obtained by solving the problem without attachments. Variational formalism with Lagrange multipliers was
applied.

Most of the papers quoted above, i.e. Refs. [3–7,12,15], deal with prismatic beams. From the mathematical
point of view, the beams are described by differential equations with constant coefficients. Whereas an analysis
of nonprismatic beams leads to a system of equations with variable coefficients. Whenever nonprismatic
beams are considered in the papers, then a specific form of the functions describing the system’s variable
parameters, e.g. linear functions, parabolic functions and exponential functions (as in Ref. [8]) or power
polynomials (as in Ref. [9]), is used. In a general case, the solutions are not known.

The present paper deals with the problem of linear vibration of the Timoshenko beam with variable strength
and geometric parameters, resting on a two-parameter nonhomogenous elastic foundation. It is assumed that
the functions which describe the beam’s variable parameters such as: flexural rigidity, density, variable
foundation parameters and loads can be described by any functions, provided that they can be expanded into
convergent series relative to Chebyshev polynomials of the first kind. Using the theorems and relations for
such polynomials, presented in monograph [16], the solution is obtained in the form of Chebyshev series. This
method is applied to solve three problems: the prismatic beam free vibration problem, the problem of stability
of nonprismatic beams loaded with a nonpotential load and the problem of stability of a frame system.
Examples, selected so as to make possible comparisons of the results obtained here with results obtained by
other methods, are provided to confirm the correctness and accuracy of the proposed method. In order to test
the effectiveness of the proposed method the eigenvalue problem for the prismatic beam was also solved by
other approximate methods, i.e. the finite element method (a method with independent approximation of the
angular displacement resulting from nondilatational deformability, put forward in a paper by Langer and
Bryja [18]) and approximation methods in which a solution in the form of conventional power series or
conventional (trigonometric) Fourier series is sought. The obtained solutions were compared with exact
analytical solutions [3]. The results of the comparisons show that the proposed method’s errors are much
smaller (relative to the exact solutions) than those of the other methods tested in the example. In the case of
the second problem, the solutions obtained for the Timoshenko beam are compared with the ones for Euler
beams and examples are solved to show the influence of a two-parameter foundation on critical load values.
The third case shows that the method can be applied to more complex beam systems, i.e. frame systems.

2. Formulation of the problem

A rectilinear nonprismatic Timoshenko beam with length 2a, resting on a two-parameter elastic foundation,
is considered. The beam is subjected to normal dynamic force loads p(X, t), moment loads o(X, t), tangent load
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r(X, t) and static load F(X) which is a tangential load for Z ¼ 1 and an axial load for Z ¼ 0. F(X)40 is assumed
for the compressive force. It is also assumed that all the beam’s geometrical and material parameters are
symmetric relative to axis X. If the beam is transversely nonhomogenous relative to axis X, then the
nonhomogeneity is symmetric at the most.

The linear transverse and longitudinal vibrations of the beam are described by the following system of
differential equations [8]:

qQ

qX
� ZF ðX Þ

q2W

qX 2
� rV ðX Þ

q2W
qt2
þ

q
qX

CðX Þ
qW

qX

� �
� KðX ÞW þ pðX ; tÞ ¼ 0,

Q�
qM

qX
þ 1� Zð ÞF ðX Þ

qW

qX
� IðX Þ

q2F
qt2
þ oðX ; tÞ ¼ 0,

q
qX

EAðX Þ
qU

qX

� �
�HðX ÞU � rH ðX Þ

q2U
qt2
þ rðX ; tÞ ¼ 0, ð1Þ

where W is the displacement perpendicular to the beam’s axis, U the displacement tangent to the axis, F the
angle of rotation of the cross section, M the bending moment and Q the shearing force. Functions rV ;H ðX Þ ¼

rBðX Þ þ rV ;H
F ðX Þ are the sum of the beam’s masses and the so-called interacting foundation masses, per unit

length. IðX Þ ¼ IBðX Þ is the beam cross section’s mass moment of inertia (per unit beam length). K(X), C(X),
H(X) are functions which characterize the reactions of the elastic foundation. Beam segment dX is shown in
Fig. 1.

The influence of the second-order effects, due to the action of time-variable axial force S ¼ EAðX ÞqU=qX ,
on the transverse vibration of the beam is neglected in Eq. (1). Otherwise, a conjugated system of nonlinear
equations would be obtained. Conjugations in system (1) also appear when the parameters are not symmetric
relative to axis X.

If one uses the formulas for bending moments, shearing forces and axial forces

MðX ; tÞ ¼ �EJðX Þ
qF
qX
; QðX ; tÞ ¼ kGAðX Þbþ F ðX Þ Z

qW

qX
� F

� �
; b ¼

qW

qX
� F;

SðX ; tÞ ¼ EAðX Þ
qU

qX
;

(2)

where EJ(X) is the beam’s flexural rigidity, EA(X) its axial rigidity, kGA(X) its shear rigidity multiplied by
cross-sectional shape factor k and b is the angle of nondilatational strain, system of Eqs. (1) will be expressed
�

�

dMM +
M

dQQ +

Q

dX

W ′  
� (W ′ + dW ′)

W ′ 

 

F

F

W ′ = � + � 

�  W ′

W ′ + dW ′

Fig. 1. Beam segment dX under axial (Z ¼ 0) or tangential (Z ¼ 1) loads.
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by this formula:

kGAþ Cð Þ
q2W

qX 2
þ

qkGA

qX
þ

qðZF Þ

qX
þ

qC

qX

� �
qW

qX
� KW

� kGAþ Fð Þ
qF
qX
�

qkGA

qX
þ

qF

qX

� �
F� rV

q2W
qt2
þ p ¼ 0;

kGAþ Fð Þ
qW

qX
þ EJ

q2F
qX 2
þ

qEJ

qX

qF
qX
� kGAþ Fð ÞF� I

q2F
qt2
þ o ¼ 0;

EA q2U
qX 2 þ

qEA

qX

qU

qX
�HU � rH

q2U
qt2
þ r ¼ 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(3)

If nondimensional variables x ¼ X=a; wðxÞ ¼W ðX Þ=a; uðxÞ ¼ UðX Þ=a; fðxÞ ¼ FðX Þ, are introduced, system
of Eqs. (3) assumes this form

kGAþ nC
� �q2w

qx2
þ

qkGA

qx
þ n

qðZF Þ

qx
þ

qC

qx

� �� �
qw

qx
� nKw

� kGAþ nF
� �qf

qx
�

qkGA

qx
þ n

qF

qx

� �
f� gr̄V

q2w
qt2
þ np̄ ¼ 0;

kGAþ nF
� �qw

qx
þ EJ

q2f
qx2
þ

qEJ

qx

qf
qx
� kGAþ nF
� �

f� gI
q2f
qt2
þ nō ¼ 0;

d EA
q2u

qx2
þ

qEA

qx

qu

qx

� �
� nHu� gr̄H

q2u

qt2
þ nr̄ ¼ 0;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(4)

and the cross-sectional forces (2) are expressed by

mðx; tÞ ¼
MðX ; tÞ

EJ0
¼ �EJ

qf
qx
; qðx; tÞ ¼

QðaxÞa2

EJ0
¼ kGA

qw

qx
� f

� �
þ nF Z̄

qw

qx
� f

� �
,

sðx; tÞ ¼
SðaxÞ

EA0
¼ EA

qu

qx
, ð5Þ

where

EJðX Þ ¼ EJ0EJðxÞ; kGAðX Þ ¼
EJ0

a2
kGAðxÞ; EAðX Þ ¼ EA0EAðxÞ; F ðX Þ ¼ P0F ðxÞ;

ZðX Þ ¼ Z̄ðxÞ; rV ;H ¼ r0r̄V ;H ; IðX Þ ¼ r0a2IðxÞ; n ¼
a2P0

EJ0
; g ¼

a4r0
EJ0

; d ¼
a2EA0

EJ0
;

pðX ; tÞ ¼
P0

a
p̄ðx; tÞ; oðX ; tÞ ¼ P0ōðx; tÞ; rðX ; tÞ ¼

P0

a
r̄ðx; tÞ;

CðX Þ ¼ P0CðxÞ; KðX Þ ¼
P0

a2
KðxÞ; HðX Þ ¼

P0

a2
HðxÞ

(6)

and EJ0, EA0, r0, P0 are reference quantities. In order to simplify the notation, EJ, kGA, EA, F, C, K, H, I,
rV,H, Z, p, o, r are consistently used for EJ;kGA;EA;F ;C;K ;H; I ; r̄V ;H ; Z̄; p̄; ō; r̄. Symbols rV and rH will not
be distinguished and will be represented by one symbol r bearing in mind that r ¼ rV in the equations for
transverse vibration and r ¼ rH in the equations for longitudinal vibration.

3. Solution of the problem

A solution of system of Eqs. (4) is sought in the form of Chebyshev series of first kind:

wðx; tÞ ¼
X1
l¼0

0

al ½w�TlðxÞ ¼
X1
l¼0

0

wlTlðxÞ,
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fðx; tÞ ¼
X1
l¼0

0

al ½f�TlðxÞ ¼
X1
l¼0

0

flTlðxÞ,

uðx; tÞ ¼
X1
l¼0

0

al ½u�TlðxÞ ¼
X1
l¼0

0

ulTlðxÞ, ð7Þ

where

X1
l¼0

0

al ½f � ¼
1

2
a0½f � þ a1½f � þ a2½f � þ . . . , (8)

Tl (x) is the l-th Chebyshev polynomial of 1st kind and al [w], al [u], al [f] are unknown coefficients of
expansion of displacement function w, u and cross section rotation function f into Chebyshev series, further
denoted by, respectively wl, ul and fl.

The theorem on the method of solving ordinary differential equations, presented in Appendix A, was
applied to solve system (4).

Using the denotations from the Appendix A theorem one can express system of Eqs. (4) in the following
matrix form:

P̂0ðxÞf
00ðx; tÞ þ P̂1ðxÞf

0ðx; tÞ þ P̂2ðxÞfðx; tÞ ¼ P̂ðx; tÞ, (9)

where

P̂0ðxÞ ¼

kGAþ nC 0 0

0 EJ 0

0 0 d EA

2
664

3
775,

P̂1ðxÞ ¼

qkGA

qx
þ n

qðZF Þ

qx
þ

qC

qx

� �
� kGAþ nFð Þ 0

kGAþ nF
qEJ

qx
0

0 0 d
qEA

qx

2
666666664

3
777777775
,

P̂2ðxÞ ¼ �

nK
qkGA

qx
þ n

qF

qx
0

0 kGAþ nF 0

0 0 nH

2
6664

3
7775,

P̂ðx; tÞ ¼

gr €w� np

gI €f� no

gr €u� nr

2
664

3
775 ¼

gr 0 0

0 gI 0

0 0 gr

2
664

3
775

€w

€f

€u

2
664

3
775�

np

no

nr

2
664

3
775 ¼ B€fðx; tÞ � P̂outðx; tÞ ð10Þ

and

f ¼

w

f

u

2
64

3
75; €f ¼

€w
€f

€u

2
64

3
75 ¼

q2w
�
qt2

q2f
�
qt2

q2u
�
qt2

2
664

3
775. (11)
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Functions Qm(x) defined by formula (A.8) assume this form

Q0ðxÞ ¼

kGAþ nC 0 0

0 EJ 0

0 0 dEA

2
664

3
775,

Q1ðxÞ ¼

�
qkGA

qx
þ n

qðZF Þ

qx
�

qC

qx

� �
� kGAþ nFð Þ 0

kGAþ nF �
qEJ

qx
0

0 0 �d
qEA

qx

2
666666664

3
777777775
,

Q2ðxÞ ¼ �

n
q2 ZFð Þ

qx2
þ nK 0 0

qkGA

qx
þ n

qF

qx
kGAþ nF 0

0 0 n H

2
666664

3
777775. ð12Þ

After determining coefficients bnmj(k) in Eq. (A.3) and applying the following relation for the coefficients of
expansion of the product of two functions (see Ref. [16 p. 128, (33)]):

al ½f ðxÞ � gðxÞ� ¼
1

2

X1
m¼0

0

am½f � al�m½g� þ alþm½g�ð Þ, (13)

one obtains the following relation, equivalent to formula (A.3):

X1
l¼0

0

2ðk2
� 1Þk ak�l ½Q0� þ akþl ½Q0�ð Þ

�
þ ðk2

� 1Þ ak�l�1½Q1� þ akþl�1½Q1� � ak�lþ1½Q1� � akþlþ1½Q1�ð Þ

þ
1

2
ðk þ 1Þ ak�l�2½Q2� þ akþl�2½Q2�ð Þ � 2k ak�l ½Q2� þ akþl ½Q2�ð Þð

þðk � 1Þ ak�lþ2½Q2� þ akþlþ2½Q2�ð ÞÞ
�

al ½f�

¼
1

2

X1
l¼0

0

ðk þ 1Þ ak�l�2½B� þ akþl�2½B�ð Þ � 2k ak�l ½B� þ akþl ½B�ð Þ þ ðk � 1Þ ak�lþ2½B� þ akþlþ2½B�ð Þ
� �

al ½€f�

� n ðk þ 1Þak�2½P̂out� � 2kak½P̂out� þ ðk � 1Þakþ2½P̂out�

� 	
ð14Þ

true for each integer k.
After introducing the following denotations for the coefficients of the Chebyshev expansions of the

functions occurring in formula (14):

al ½EJ� ¼ el ; al ½kGA� ¼ al ; al ½EA� ¼ dl ; al ½F � ¼ f l ; al ½C� ¼ cl ; al ½K � ¼ kl ; al ½H� ¼ hl ,

al ½r� ¼ gl ; al ½I � ¼ il ; al ½p� ¼ pl ; al ½o� ¼ ol ; al ½r� ¼ rl , ð15Þ

assuming that ZðxÞ ¼ Z ¼ const and performing transformations using this relation

al ¼
1

2l
a0l�1 � a0lþ1
� �

; la0, (16)
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where al ¼ al ½f � and a0l ¼ al ½qf =qx�, one obtains the following infinite system of ordinary differential
equations:

X1
l¼0

0
k11ðk; lÞ k12ðk; lÞ 0

k21ðk; lÞ k22ðk; lÞ 0

0 0 k33ðk; lÞ

2
664

3
775

wl

fl

ul

2
664

3
775 ¼

P1ðkÞ

P2ðkÞ

P3ðkÞ

2
664

3
775þX

1

l¼0

0
m11ðk; lÞ 0 0

0 m22ðk; lÞ 0

0 0 m33ðk; lÞ

2
664

3
775

€wl

€fl

€ul

2
664

3
775,

k ¼ 0; 1; 2; 3; . . . , ð17Þ

where

k11ðk; lÞ ¼ 2ðk2
� 1Þ l n ck�l � ckþlð Þ þ ak�l � akþlð Þ½ �

�
1

2
n ðk þ 1Þ kk�l�2 � kkþl�2ð Þ � 2k kk�l � kkþlð Þ þ ðk � 1Þ kk�lþ2 � kkþlþ2ð Þ½ �

þ 2nZ ðk þ 1Þðk � lÞ l f k�l � ðk � 1Þðk þ lÞ l f k�l


 �

þ

0 for l ¼ 0; 1;

4nZl
Pl�1
j¼1

ðk � l þ 2jÞ f k�lþ2j for lX2;

8>><
>>:

k12ðk; lÞ ¼ �ðk
2
� 1Þ ak�l�1 þ akþl�1 � ak�lþ1 � akþlþ1ð Þ þ n f k�l�1 þ f kþl�1 � f k�lþ1 � f kþlþ1

� �
 �
, (18)

k21ðk; lÞ ¼ ðk þ 1Þl ak�l�1 � akþl�1ð Þ � ðk � 1Þl ak�lþ1 � akþlþ1ð Þ

þ n ðk þ 1Þ l f k�l�1 � f kþl�1

� �
� ðk � 1Þ l f k�lþ1 � f kþlþ1

� �
 �
,

k22ðk; lÞ ¼ 2ðk2
� 1Þl ek�l � ekþlð Þ

�
1

2
ðk þ 1Þ ak�l�2 þ akþl�2ð Þ

�
� 2k ak�l þ akþlð Þ þ ðk � 1Þ ak�lþ2 þ akþlþ2ð Þ

þ n ðk þ 1Þ f k�l�2 þ f kþl�2

� �
� 2k f k�l þ f kþl

� �
þ ðk � 1Þ f k�lþ2 þ f kþlþ2

� �� �

,

k33ðk; lÞ ¼ 2dðk2
� 1Þl dk�l � dkþlð Þ

�
1

2
n ðk þ 1Þ hk�l�2 � hkþl�2ð Þ � 2k hk�l � hkþlð Þ þ ðk � 1Þ hk�lþ2 � hkþlþ2ð Þ½ �,

P1ðkÞ ¼ �n ðk þ 1Þpk�2 � 2kpk þ ðk � 1Þpkþ2


 �
,

P2ðkÞ ¼ �n ðk þ 1Þok�2 � 2kok þ ðk � 1Þokþ2½ �,

P3ðkÞ ¼ �n ðk þ 1Þrk�2 � 2krk þ ðk � 1Þrkþ2½ �, ð19Þ

m11ðk; lÞ ¼
1

2
g
X1
l¼0

0

ðk þ 1Þ gk�l�2 þ gkþl�2

� �
� 2k gk�l þ gkþl

� �
þ ðk � 1Þ gk�lþ2 þ gkþlþ2

� �
 �
,

m22ðk; lÞ ¼
1

2
g
X1
l¼0

0

ðk þ 1Þ ik�l�2 þ ikþl�2ð Þ � 2k ik�l þ ikþlð Þ þ ðk � 1Þ ik�lþ2 þ ikþlþ2ð Þ½ �,

m33ðk; lÞ ¼
1

2
g
X1
l¼0

0

ðk þ 1Þ gk�l�2 þ gkþl�2

� �
� 2k gk�l þ gkþl

� �
þ ðk � 1Þ gk�lþ2 þ gkþlþ2

� �
 �
. ð20Þ

The transformation of Eqs. (14) is described in more detail for a fourth-order differential equation in earlier
works by the author [1,2].



ARTICLE IN PRESS
P. Ruta / Journal of Sound and Vibration 296 (2006) 243–263250
In infinite system of Eqs. (17) the first two groups of (six) equations are satisfied identity-wise for k ¼ 0,1
(the number of groups of equations satisfied identity-wise is equal to the order of the differential equation).
This equations are replaced by equations for boundary conditions. In the case of the Timoshenko beam, the
boundary conditions for the basic modes of support are as follows:
�
 pin supported end

w ¼ 0; m ¼ �EJ
qf
qx
¼ 0; u ¼ 0 or s ¼ EA

qu

qx
¼ 0. (21)
�
 clamped end

w ¼ 0; f ¼ 0; u ¼ 0. (22)
�
 Free end

m ¼ �EJ
qf
qx
¼ 0,

q ¼ kGA
qw

qx
� f

� �
þ nF Z

qw

qx
� f

� �
¼ 0,

s ¼ EA
qu

qx
¼ 0. ð23Þ

The following formulas stating the values of the Chebyshev polynomials and their first derivatives at points
�1 (coordinates of the beam’s ends):

Tnð1Þ ¼ 1; Tnð�1Þ ¼ ð�1Þ
n; T0nð1Þ ¼ n2; T0nð�1Þ ¼ �ð�1Þ

nn2; (24)

are helpful when introducing the equations for boundary conditions. Having expanded the functions in
definition of internal forces (5) into Chebyshev series, determined the respective derivatives and employed
identity (24), one gets the following expression for kinetic boundary conditions:

mð�1; tÞ ¼ EJ�
X1
l¼0

0

ð�1Þl l2fl ; mðþ1; tÞ ¼ �EJþ
X1
l¼0

0

l2fl , (25)

qð�1; tÞ ¼ �
X1
l¼0

0

kGAþ nZfð Þ�ð�1Þ
l l2wl �

X1
l¼0

0

kGAþ nfð Þ�ð�1Þ
lfl ,

qðþ1; tÞ ¼
X1
l¼0

0

kGAþ nZfð Þþl2wl �
X1
l¼0

0

kGAþ nfð Þþfl , ð26Þ

sð�1; tÞ ¼ EA�
X1
l¼0

0

ð�1Þl l2ul ; sðþ1; tÞ ¼ EAþ
X1
l¼0

0

l2ul , (27)

where

EJ� ¼ EJð�1Þ ¼
X1
l¼0

0

elTlð�1Þ ¼
X1
l¼0

0

ð�1Þlel ; EJþ ¼ EJðþ1Þ ¼
X1
l¼0

0

elTlð1Þ ¼
X1
l¼0

0

el ,

EA� ¼ EAð�1Þ ¼
X1
l¼0

0

dlTlð�1Þ ¼
X1
l¼0

0

ð�1Þldl ; EAþ ¼ EAðþ1Þ ¼
X1
l¼0

0

dlTlð1Þ ¼
X1
l¼0

0

dl ,
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kGAþ nsfð Þ� ¼ kGAð�1Þ þ nsf ð�1Þ ¼
X1
l¼0

0

ðal þ nsf lÞTlð�1Þ ¼
X1
l¼0

0

ð�1Þlðal þ nsf lÞ,

kGAþ nsfð Þþ ¼ kGAðþ1Þ þ nsf ðþ1Þ ¼
X1
l¼0

0

ðal þ nsf lÞTlðþ1Þ ¼
X1
l¼0

0

ðal þ nsf lÞ; s ¼ 1 _ s ¼ Z. ð28Þ

The following formulas

wð�1; tÞ ¼
X1
l¼0

0

ð�1Þlwl ; wðþ1; tÞ ¼
X1
l¼0

0

wl ,

fð�1; tÞ ¼
X1
l¼0

0

ð�1Þlfl ; fðþ1; tÞ ¼
X1
l¼0

0

fl ,

uð�1; tÞ ¼
X1
l¼0

0

ð�1Þlul ; uðþ1; tÞ ¼
X1
l¼0

0

ul ð29Þ

obtained from expressions (7) after relation (24) is taken into account, are used to determine kinematic
boundary conditions.

By replacing the first four equations of infinite system of Eqs. (17) with the equations for boundary
conditions one gets an infinite system of ordinary differential equations which allow one to solve the problem.
In a special case of harmonic vibration, the infinite system of differential equations reduces itself to an infinite
system of algebraic equations.

4. Numerical examples

In order to illustrate the method and verify its effectiveness, three numerical examples were solved. In the
examples, the solutions obtained by the proposed method are compared with those obtained by other methods
(including exact analytical solutions) and the solutions for the Timoshenko beam are compared with those for
the Euler model. In the first two examples only the transverse vibrations of the beams were analysed while in
the third example the axial deformability of the beams was taken into account.

4.1. Example 1

The method was applied to solve the prismatic beam natural vibration problem. Two types of beams: simple
supported and clamped–free were considered. The beams’ parameters were: modulus of elasticity
E ¼ 2:1� 1011 N=m2, modulus of rigidity G ¼ 3E=8 beam length 2a ¼ 0:4m, the cross section in the form
of a rectangle with height h ¼ 0.08m and width b ¼ 0.02m, cross-sectional shape factor k ¼ 2/3 and beam
density rBV ¼ 7850 kg=m3.

The results were compared with the analytical solutions obtained by Huang [3]. Since some editorial errors
(among others, incorrect signs in some expressions) and an incorrectly derived (a group of solutions omitted)
formula for the free vibration of the simple supported beam were found in Ref. [3], amended versions of the
formulas were used for the comparisons. In the case of the free vibration problem, system of differential
equations (17) (supplemented with equations for boundary conditions) becomes an infinite system of algebraic
equations. To solve the equations, the system was limited to a finite system. Then the displacement function
and the cross section rotation are given by the finite sums of Chebyshev series

wðxÞ ¼
Xm

l¼0

wlTlðxÞ; fðxÞ ¼
Xm

l¼0

flTlðxÞ. (30)

To test the convergence of the solutions, the system was solved for an ever increasing size of the
approximation base: m ¼ 20, 30. The natural frequencies (for the different types of beams) determined by the
proposed method and the exact values calculated on the basis of Ref. [3] are shown in Tables 1 and 3. Whereas
the relative error between the exact solution [3] and the solution obtained by the proposed method is shown in



ARTICLE IN PRESS

Table 3

Free vibration frequencies for clamped–free beam

o1 o2 o3 o4 o5 o6 o7 o8 o9

m ¼ 20 2529.4927 13 279.905 31 044.791 50 825.834 71 565.046 91 994.772 11 0976.10 119 244.95 131 611.40

m ¼ 30 2529.4927 13 279.905 31 044.791 50 825.834 71 565.047 91 994.824 11 0975.98 119 244.57 131 606.52

Exact 2529.4927 13 279.905 31 044.791 50 825.834 71 565.047 91 994.824 11 0975.98 119 244.57 131 606.52

Table 4

Relative errors Errm given by formula (31) for eigenforms of clamped–free beam

i ¼ 1 2 3 4 5 6 7 8 9

m ¼ 20 Wi 8.88� 10�16 3.33� 10�15 3.91� 10�12 1.30� 10�9 1.59� 10�7 6.68� 10�6 2.18� 10�5 1.43� 10�4 5.06� 10�4

Fi 2.02� 10�15 5.57� 10�15 2.65� 10�12 1.66� 10�9 1.20� 10�7 2.17� 10�6 1.06� 10�4 1.64� 10�4 5.03� 10�4

m ¼ 30 Wi 7.77� 10�16 3.33� 10�15 2.59� 10�14 1.22� 10�13 2.01� 10�13 6.01� 10�13 3.46� 10�12 4.12� 10�11 3.52� 10�10

Fi 1.88� 10�15 5.40� 10�15 1.44� 10�14 7.63� 10�14 7.36� 10�14 2.52� 10�14 1.39� 10�11 4.00� 10�11 2.93� 10�10

Table 1

Free vibration frequencies for supported–supported beam

o1 o2 o3 o4 o5 o6 o7 o8 o9

m ¼ 20 6838.8336 23 190.827 43 443.493 64 939.185 86 710.888 108 431.32 111 981.29 120 647.23 130 006.37

m ¼ 30 6838.8336 23 190.827 43 443.493 64 939.185 86 710.889 108 431.34 111 981.29 120 647.23 130 003.61

Exact 6838.8336 23 190.827 43 443.493 64 939.185 86 710.889 108 431.34 111 981.29 120 647.23 130 003.61

Table 2

Relative errors Errm given by formula (31) for eigenforms of supported–supported beam

i ¼ 1 2 3 4 5 6 7 8 9

m ¼ 20 Wi 1.44� 10�15 1.92� 10�15 4.59� 10�11 1.62� 10�9 9.06� 10�7 4.34� 10�6 0.00 6.17� 10�13 5.12� 10�4

Fi 2.04� 10�15 6.21� 10�15 1.82� 10�10 2.52� 10�9 7.41� 10�6 4.87� 10�6 0.00 2.90� 10�13 7.05� 10�3

m ¼ 30 Wi 1.87� 10�15 2.26� 10�15 7.47� 10�15 1.42� 10�14 4.64� 10�14 1.63� 10�13 0.00 2.86� 10�13 3.07� 10�10

Fi 1.91� 10�15 1.51� 10�15 2.96� 10�14 3.98� 10�14 1.07� 10�13 1.75� 10�13 0.00 6.65� 10�14 4.06� 10�9

P. Ruta / Journal of Sound and Vibration 296 (2006) 243–263252
Tables 2 and 4. The error is expressed by

Errmðf Þ ¼
sup�1pxp1 f mðxÞ � f ðxÞ

�� ��
f ðxÞ
�� �� , (31)

where f ðxÞ
�� �� ¼ sup�1pxp1 f ðxÞ

�� ��, f(x) is an exact solution and fm(x) is a solution defined by a finite Chebyshev
series with m+1 terms. The graphs of the eigenforms are shown in Figs. 2 and 3. The eigenforms were
determined by the proposed method for approximation base size m ¼ 30.

In order to test the effectiveness of the proposed method the eigenvalue problem for the prismatic beam was
also solved by other approximate methods, i.e. the finite element method (with independent approximation of
angular displacement due to nondilatational deformability [18]) and approximation methods in which a
solution in the form of conventional power series or conventional (trigonometric) Fourier series was sought.
In all the methods identical (or slightly larger in the case of FEM) approximation base dimensions (m ¼ 25)
were adopted. The obtained solutions were compared with the exact analytical solutions [3]. The computations
were carried out for three types of beams: simple supported, clamped–free and clamped–pin supported.
Because of this paper’s limited length, only the results for the clamped–free beam are presented here. The exact
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eigenvalues and the ones obtained by the approximate methods are shown in Table 5 where the methods are
denoted by the following symbols: FEM the finite element method, CF the approximation method with
solution approximation by conventional Fourier series and CP the approximation method with
approximation by conventional power series. Typical graphs of relative error functions defined by this formula

Eðf Þ ¼
~f ðxÞ � f ðxÞ
�� ��

f ðxÞ
�� �� (32)

for selected eigenforms ðW 1;F1Þ; ðW 9;F9Þ determined by the different methods are shown in a logarithmic
scale in Fig. 4. The denotations in formula (32) are identical as the ones in formula (31), except for symbol ~f ðxÞ
which here stands for one of the approximate solutions.

4.2. Example 2

The problem of dynamic stability of beams under a nonpotential load was solved (Fig. 1). Two static
schemes were considered: a clamped–free beam (Fig. 5a) and clamped–pin supported beam (Fig. 5b). The
beams were subjected to a concentrated tangential force or a uniformly distributed tangential static load. By
applying the dynamic criterion of stability loss (bifurcation or flutter), the critical values of the loads were
determined. The analysis was performed for homogenous prismatic beams and beams with variable cross
sections described by functions b(x), h(x) (Fig. 5). The following were also assumed: modulus of elasticity
E ¼ 2:1� 1011 N=m2, modulus of rigidity G ¼ 3E=8, beam length L ¼ 2a ¼ 0:4m, the cross section in the
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Table 5

Free vibration frequencies of clamped–free beam for different solution methods

o1 o2 o3 o4 o5 o6 o7 o8 o9

FEM 2529.5182 13 283.393 31 088.060 51 011.254 72 075.176 93 025.284 11 2457.31 119 997.12 133 427.40

CF 2529.3240 13 294.154 31 082.644 50 943.476 71 763.763 92 403.849 11 1681.07 119 271.29 132 393.69

CP 2529.4927 13 279.905 31 043.365 49 008.433 52 960.403� 52 960.403+ 55 118.411� 55 118.411+ 79 570.979�

11441.036i 11441.036i 31897.209i 31 897.209i 12 157.165i

This paper 2529.4927 13 279.905 31 044.791 50 825.834 71 565.047 91 994.824 11 0975.98 119 244.57 131 606.52

Exact 2529.4927 13 279.905 31 044.791 50 825.834 71 565.047 91 994.824 11 0975.98 119 244.57 131 606.52
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form of a rectangle with height h(x) and width b(x), rectangular cross section shape factor k ¼ 2/3 and beam
density rBV ¼ 7850 kg=m3.

The Beck column and the Leipholz column (clamped–free beams) with bðxÞ ¼ hðxÞ ¼ 0:04m, subjected to a
concentrated tangential force or a uniformly distributed tangential load were analysed. The results are shown
against the solution for the Euler beam (with the same parameters as those of the Timoshenko beam) in Fig. 6.
The solutions of the stability problem for the clamped–free beams with variable cross sections described by

respectively functions bðxÞ¼hðxÞ¼0:04�
ffiffiffiffi
15
43

q
2� ðxþ 1Þ2=4
� �

m and bðxÞ ¼ hðxÞ ¼ 0:04�
ffiffi
3
7

q
2� ðxþ 1Þ=2
� �

m

are shown in Figs. 7a and b. Multipliers
ffiffiffiffi
15
43

q
and

ffiffi
3
7

q
in formulas for b(x), h(x) were so chosen that all the
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beams had the same volume of 0:04� 0:04� 0:4m3. In the considered cases, stability was lost through flutter.
Similar analyses were performed for the clamped–pin supported beams for the same parameters as those of the
clamped–free systems. The obtained results are shown in Figs. 8 and 9.



ARTICLE IN PRESS
P. Ruta / Journal of Sound and Vibration 296 (2006) 243–263 257
Fig. 10 shows the solution of the stability problem for a clamped–free prismatic beam resting on a
one- (the Winkler foundation) and two-parameter elastic foundation. For comparison, the solutions which
do not take into account the influence of the elastic foundation are included in Figs. 10a–c. The
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beam’s parameters were the same as in the previously considered prismatic beam stability problem. The
foundation parameters were: K1 ¼ 0:5� 108 N=m2; K2 ¼ 1:0� 108 N=m2; K3 ¼ 2:0� 108 N=m2; C1 ¼

C2 ¼ C3 ¼ 0:0 (the Winkler foundation) — the results in Fig. 10a; K1 ¼ K2 ¼ K3 ¼ 0:0; C1 ¼ 0:5�
108 N; C2 ¼ 1:0� 108 N; C3 ¼ 2:0� 108 N — the results in Fig. 10b and K1 ¼ C1 ¼ 0:5� 108 N=m2; K2 ¼

C2 ¼ 1:0� 108 N=m2; K3 ¼ C3 ¼ 2:0� 108 N=m2 — the results in Fig. 10c. In all the cases it was assumed
that rV

F ¼ 0.
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4.3. Example 3

In order to demonstrate the applicability of the method to the analysis of more complex beam systems, the
problem of stability of frame systems subjected to an axial potential load was solved. The schemes of the
frames are shown in Figs. 11a and b. The first case was taken from monograph [17]. The other cases had been
considered in paper [2] by the author. But in both works, the frames consist of Euler beams. In the present
case, the axial deformability of the beams is taken into account.

The systems were analysed for the following material parameters: modulus of elasticity
E ¼ 2:8� 1010 N=m2, modulus of rigidity G ¼ 5E=12 and density rBV ¼ 2400 kg=m3. For each scheme in
Fig. 11 two frames differing in the transverse dimensions of their beams were considered. The frames’ cross
sections were so selected that one frame was made up of slender beams while the other was made up of thick
beams. The beams’ geometrical parameters were as follows:
(a)
 The frame with slender beams: The spandrel beam rectangular in cross section, with cross-sectional area
A ¼ 0.24m2, the cross section’s moment of inertia J ¼ 7:2� 10�3 m4, shape factor k ¼ 2/3, the columns
circular in cross section,

AðxÞ ¼
p10�2

8
ð3þ x=aÞ2 m2; JðxÞ ¼

p10�4

64
ð3þ x=aÞ4 m4; k ¼ 3=4.
(b)
 The frame with thick beams: The spandrel beam rectangular in cross section, with cross-sectional area
A ¼ 0.96m2, the cross section’s moment of inertia J ¼ 1:152� 10�1 m4, shape factor k ¼ 2/3, the columns
circular in cross section,

AðxÞ ¼ 2p10�2ð3þ x=aÞ2 m2; JðxÞ ¼ 4p10�4ð3þ x=aÞ4 m4; k ¼ 3=4.
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Fig. 11a) versus axial potential force P. Obtained values: P1;cr ¼ 451 629 604N; P2;cr ¼ 526 276 923N; PE
1;cr ¼ 480 909 512N;

PE
2;cr ¼ 570 903 811N. (b) For frame (scheme shown in Fig. 11b) versus axial potential force P. Obtained values:

P1;cr ¼ 113 666 324N; P2;cr ¼ 454 462 931N; PE
1;cr ¼ 117 274 307N; PE

2;cr ¼ 484 023 457N. Symbols: o1—model T ( ), model E

(.....), o2—model T ( ), model E ( ).
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Fig. 12. Two first free vibration frequencies (Example 3a): (a) for frame (scheme shown in Fig. 11a) versus axial potential force P.

Obtained values: P1;cr ¼ 2 641 321N;P2;cr ¼ 2 710 418N, (b) for frame (scheme shown in Fig. 11b) versus axial potential force P. Obtained

values: P1;cr ¼ 557 323N; P2;cr ¼ 2 648 051N.
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The beam lengths and the local coordinate system used to describe the variable parameters of the columns are
shown in Fig. 11. When solving the system, the equality of cross section rotation angles f in the joints was
assumed and 26 (m ¼ 25) Chebyshev series terms were used to approximate displacements w and angle of
rotation f. The results are shown in Figs. 12 and 13.

5. Discussion

In the eigenforms for the simple supported beam one can distinguish groups of eigenforms characteristic of
the Timoshenko beam. The parameters used in another (equivalent) way of defining the Timoshenko model,
where it is assumed that the transverse displacements of the beam are the sum of the effects of bending
and nondilatational strains and are expressed as W ðX ; tÞ ¼W MðX ; tÞ þW QðX ; tÞ, will be helpful in describing
the groups. Angular displacement F of the cross section and nondilatational deformation angle b, which
are used in this paper to describe the model, are related to W M ðX ; tÞ; W QðX ; tÞ as follows: F ¼ qW M=
qX ; b ¼ qW Q=qX . Using the introduced displacements W MðX ; tÞ; W QðX ; tÞ one can describe the groups of
eigenvalues in the solution for the simple supported beam. The first group comprises eigenforms with flexural
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and nondilatational displacements having the same sign, i.e. eigenforms ðW 1;F1Þ � ðW 7;F7Þ. The second
group includes eigenforms whose displacements have opposite signs, i.e. W MðX ; tÞ; W QðX ; tÞ. The first
eigenform in this group is (W9, F9). Purely nondilatational eigenform (W8, F8) ðW � 0; F ¼ �b ¼ consta0Þ
occurs between the two groups.

The natural frequencies calculated by the proposed method and the analytically determined exact
frequencies were found to be in very good agreement. The relative error for the first nine free vibration
frequencies does not exceed 3.7� 10�5 for approximation with 20 polynomials and 9.2� 10�8 for
approximation with 30 polynomials. The eigenforms are similarly well approximated, but the cross section
rotation function is usually less accurately approximated than the displacement function. The relative error for
the first nine eigenforms is below 5.1� 10�4 and 7.1� 10�3 for, respectively, the displacement function and the
rotation function for approximation with 20 polynomials and, respectively, 3.5� 10�10 and 4.1� 10�9 for
approximation with 30 polynomials. If for the different methods of solving the eigenvalue problem one
analyses the eigenvalues (Table 5) and the graphs of the relative errors defined by formula (32) (Fig. 4), it
becomes apparent that the method proposed in this paper yields the most accurate results. As regards
eigenvalues, the error is 105–1010 times smaller than in the case of the other methods. The approximation
method using conventional power series has a similar accuracy, but only for the first three eigenvalues and
eigenforms. From the fifth frequency onwards one gets incomparable complex solutions. It follows from Fig. 4
that for the proposed method the errors for the first eigenforms are only due to rounding errors. Similar
conclusions can be drawn from the results (not reported here because of this paper’s limited length) for the
clamped–pin supported beam. Also in this case, the proposed method yields results with errors from several to
about 10 or 20 orders of magnitude smaller than those of the other methods. The simply supported beam
requires more comment: the best approximation was obtained using conventional Fourier series (the proposed
method yielded results with errors larger by a few orders of magnitude), but it is rather an exception to the rule
since such a good approximation by means of conventional Fourier series for the simple supported beam was
due to the fact that the exact analytical solutions for this type of beam have the form of a finite linear
combination of trigonometric functions. The same applies to the simply supported Euler beam for which the
exact solutions have the form of sinusoids. In this case, approximation by means of just one (proper) Fourier
series element yields an exact solution.

In the second example, the solutions of the stability problem (the free vibration frequency versus tangential
compressive force diagrams shown in Figs. 7 and 9) for the Timoshenko beams and those for the Euler beams
are compared. Since the ratio between the beams’ transverse dimension and length was 1

10
, the results obtained

for the Euler model should not differ considerably from the ones calculated for the Timoshenko beam. This is
confirmed in Figs. 6 and 8. Even better agreement is obtained for the systems shown in Figs. 7 and 9. In the
latter case, the differences were so slight that the graphs practically coincided and therefore they were not
presented.

From the results obtained for the beam resting on the elastic foundation one can draw the following
conclusions:
(a)
 By increasing the Winkler foundation’s rigidity — parameter K (Fig. 10a) — one obtains (in the
considered parameter range) only a slight reduction of Pcr which assumes the following successive values:
Pcr ¼ 5 071 794; 5 061 370; 5 040 529N. This conclusion confirms the results (for the problem of stability
of a prismatic Timoshenko beam resting on the Winkler foundation) reported earlier by other authors, e.g.
by Lee and Yang [19]. It becomes apparent that parameter K contributes more to an increase in the beam’s
first free vibration frequency than to an increase in its second frequency.
(b)
 If the value of parameter C in the foundation is increased at K ¼ 0 (Fig. 10a), this results in a substantial
increase in the critical load ðPcr ¼ 55 245 768; 105 326 413; 205 406 409NÞ and in the second free vibration
frequency while the first free vibration frequency significantly decreases.
(c)
 If the values of parameters C and K are simultaneously increased (in the tested parameter range), this
results in an increase in the critical load ðPcr ¼ 55 234 920; 105 304 289; 205 361 293NÞ and in the first and
second free vibr ation frequency; the increase of the second frequency being much larger than that of the
first frequency.
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Example 3 shows that the proposed method can be applied to much more complex cases. Similarly as in
Example 2, the slenderness ratio of the beams in the frame considered in Example 3a was sufficiently high to
ensure that the results obtained using the Timoshenko model did not differ considerably from the ones
obtained for the Euler beams — as shown by the comparison of the results (see Fig. 12) with the ones
presented in an earlier paper by the author [2]. In both cases the graphs practically coincide. In Example 3b,
where the frame is made up of thick beams, the differences are larger (see Fig. 13), particularly in the frame
shown in Fig. 11a (see the graphs in Fig. 13a).

Appendix A

In this paper, in order to solve the system of differential equations a generalization of the following theorem
concerning ordinary differential equations [16, p. 231] is used:

Theorem. If function f satisfies a linear equation with order n40:

Xn

m¼0

P̂mðxÞ f
ðn�mÞ
ðxÞ ¼ P̂ðxÞ (A.1)

and

QmðxÞ ¼
Xm

j¼0

ð�1Þmþj
n� j

m� j

 !
P̂
ðm�jÞ

j ðxÞ; m ¼ 0; 1; . . . ; n, (A.2)

where
n

m

� �
¼ n!=ðm!ðn�mÞ!Þ and functions ðQ0 f ÞðnÞ; ðQ1 f Þðn�1Þ; . . . ;Qn f ; P̂ have determinable coefficients of

the Chebyshev series, then for each integer k the following identity holds:Xn

m¼0

2n�m
Xm

j¼0

bnmjðkÞak�mþ2j½QmðxÞf ðxÞ� ¼
Xn

j¼0

bnnjðkÞak�nþ2j½P̂ðxÞ�, (A.3)

where bnmj(k) are polynomials of integer k

bnmjðkÞ ¼ ð�1Þ
j

m

j

 !
ðk � nÞn�mþjðk �mþ 2jÞðk þ j þ 1Þn�jðk

2
� n2Þ

�1;

m ¼ 0; 1; . . . ; n; j ¼ 0; 1; . . . ;m:

(A.4)

ðkÞn ¼
1 for n ¼ 0;

kðk þ 1Þðk þ 2Þ . . . ðk þ n� 1Þ for n ¼ 1; 2; 3; . . .

(
(A.5)

and ak[h] is the kth coefficient of expansion of function h(x) into a Chebyshev series relative to Chebyshev

polynomials of the first kind (the proof of this theorem can be found in Ref. [16, pp. 231–234].

The generalization of the theorem consists in the transference of the differential equation approximate
solution method (described by the theorem) onto systems of linear differential equations (see Ref. [16, p. 323]).
In such a case, system of N equations can be presented in this matrix form

Xn

m¼0

P̂mðxÞ f
ðn�mÞðxÞ ¼ P̂ðxÞ, (A.6)

where coefficients P̂mðxÞ are square matrices of degree N and f(x) and P̂ðxÞ are N-element vectors. The
differentiation of the vector means the differentiation of each of its components. If vector function f(x)
satisfies system of Eqs. (A.6) and the theorem’s assumptions hold good, then for each integer k the following
identity is true:

Xn

m¼0

2n�m
Xm

j¼0

bnmjðkÞak�mþ2j½QmðxÞfðxÞ� ¼
Xn

j¼0

bnnjðkÞak�nþ2j½P̂ðxÞ�. (A.7)
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Functions Qm(x) in the formula are matrix equivalents of the functions defined by formula (A.2)

QmðxÞ ¼
Xm

j¼0

ð�1Þmþj
n� j

m� j

 !
P̂
ðm�jÞ

j ðxÞ; m ¼ 0; 1; . . . ; n (A.8)

and a1[Qm(x) f(x)] stands for a vector whose elements are the lth coefficients of the Chebyshev expansion of
the components of vector Qm(x) f(x).
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